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Background

Statistical mechanics
Goal : Derive macroscopic phenomena from microscopic systems
Typical microscopic model : stochastic interacting particle systems

• Exclusion process (SSEP,TASEP,ASEP...)

• Zero range process

• Interacting Brownian motions

Question: What can we say about macroscopic properties of Box-Ball
System (BBS) ?



Box-Ball System

Introduced in 1990 by Takahashi-Satsuma

• Discrete time deterministic dynamics (Cell-Automaton)

• Finite number of balls

・・・
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Box-Ball System

Def 1

• Every ball moves exactly once in each evolution time step

• The leftmost ball moves first and the next leftmost ball moves next
and so on...

• Each ball moves to its nearest right vacant box
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Box-Ball System

Def 2

• A carrier moves from left to
right

• The carrier picks up a ball
when it finds a ball (The
carrier can load any number
of balls)

• The carrier puts down a ball
when it comes to an empty
box carrying at least one ball



Why BBS is interesting?

Key properties

• Solitonic behavior

• Integrable system (infinitely many conserved quantities)

• Initial value problem is solved by various methods

Connections to many physical models

• Ultra-discretization of discrete KdV equation

• Crystallization of an integrable lattice model (six-vertex model)

• Ultra-discretization of Toda lattice

• Many variations of BBS have been also studied and known to have
connections to variants of above models



Key property of BBS : Solitons

• (1, 0), (1, 1, 0, 0), (1, 1, 1, 0, 0, 0)... are ”Solitons”
• (1, 1, 1, . . . , 1, 0, 0, 0, . . . , 0) : soliton of size n
• soliton of size n moves with speed n

• Number of each type of solitons is conserved ⇒ ∃ Infinite number of
conserved quantities

• The interaction between solitons are nonlinear
• Integrable system



Box-Ball System

• η = (ηn)n∈N ∈ {0, 1}N,
∑

n∈N ηn <∞
• BBS (one time step) operator T : η → Tη

• Wn : the number of balls on the carrier as it passes location n
(W0 := 0)

• Tηn = 0 if ηn = 1

• Tηn = 1 if ηn = 0 and Wn−1 ≥ 1

• Wn =
∑n

m=1(ηm − Tηm)

• Tηn = min{1− ηn,Wn−1}



Reversibility

• The time reversal of T , denoted by T−1 is obtained by the same rule
of the dynamics but replace ’left’ by ’right’ in Def 1,2

• T−1 = R ◦ T ◦ R where R is the operation of reversing the order of
boxes



Our interest

As a dynamical system

• Invariant measures

• Ergodicity

As an interacting particle system

• Properties of invariant measures (parameter, translation invariance...)

• Examples of invariant measures

• Asymptotic behavior of the integrated particle current and the tagged
particle (when the initial measure is random)

• Scaling limit (Box-Ball System on R)

⇒ We need to define BBS on Z with infinitely many balls!
.
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“ball” → “particle” from this slide



Previous result

Ferrari and his collaborators have been already studied BBS with infinitely
many particles with random initial condition (2018.arxiv).

• Introduce BBS on Z and give a sufficient condition on initial
configuration for the dynamics to be well-defined

• Show that the Bernoulli product measure with density less than 1
2 is

invariant under T

• Show that any invariant measure of T with density less than 1
4

satisfying a nice mixing condition has a product decomposition of
measures w.r.t the size of solitons



Our main result : Deterministic part

• Characterize ST , ST−1
: the domain of T ,T−1

• Characterize Srev : the space of “reversible” configurations
{η ; TT−1η = T−1Tη = η}

• Characterize S inv : the “invariant” space of configurations
{η ; T kη ∈ Srev ∀k ∈ Z}

.
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.ST ∩ ST−1 ) Srev ) S inv

• Construct a bijection between the initial configuration (ηn)n∈Z and
time series of the current at origin (T kW0)k∈Z



Our main result : Probabilistic part (random initial
configuration)

BBS on Z
• Some properties of invariant measures
• A sufficient condition to be invariant
• Three classes of probability measures satisfying this sufficient
condition (including the product Bernoulli measures)

• A sufficient condition for a probability measure to make T be ergodic
• Ergodicity of the operator T for the above examples
• LLN, CLT and LDP for integrated currents of particles at origin for
the above examples

• LLN, CLT and LDP for a tagged particle for some of the above
examples

BBS on R
• Introduce dynamics T for more general configurations in continuous
state space

• Brownian motion with positive drift is invariant under T



Key Observation:
BBS is Pitman’s 2M − X transform

We introduce a path-encoding of the configuration. It reveals that the
dynamics of BBS is exactly the Pitman’s well-known 2M − X
transformation.

This observation enables us to study many new properties of BBS with
infinite particles. It also gives a natural way to extend the dynamics on R.
.
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Relation between (some versions of) Pitman’s 2M − X transform and
several important integrable systems and its application to stochastic
models have been studied by O’Connell and his collaborators. Quantum
Toda lattice, random polymers, random matrices, KPZ equation...so on.
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Path encoding

• η = (ηn)n∈Z ∈ {0, 1}Z

• S = (Sn)n∈Z ∈ S0, S0 := {S : Z→ Z; S0 = 0, |Sn − Sn−1| = 1}
• η ↔ S : Sn − Sn−1 = 1− 2ηn : One-to-one

• ηn = 1: particle ↔ Sn − Sn−1 = −1: down jump

• ηn = 0: empty ↔ Sn − Sn−1 = 1: up jump

0 1-5 -4 -3 -2 -1 2 3 4 5-6 6

S : Path encoding of η



Past maximum and the carrier via path encoding

Suppose
∑

n∈Z ηn <∞
.
Lemma
..
.
. ..

.

.

Wn = Mn − Sn where Mn = supm≤n Sm.

0 1-5 -4 -3 -2 -1 2 3 4 5-6 6



BBS is Pitman’s transformation

Suppose
∑

n∈Z ηn <∞.

S → TS is the reflection with respect to the past maximum :
.
Lemma
..
.
. ..

.

.

TSn = 2Mn − Sn − 2M0 where TS is the path encoding of Tη.

0 1-5 -4 -3 -2 -1 2 3 4 5-6 6



Known results for Pitman’s transformation for one-sided
stochastic processes

• (Sn)n∈Z+ : Simple random walk (SRW) → (TSn)n∈Z+ : SRW
conditioned to be non-negative

• (Sx)x≥0,x∈R : Brownian motion (BM) → (TSx)x≥0,x∈R :
3-dimensional Bessel Process

* Many variations of the results are also known



Domain and definition of T

The dynamics can be generalized straightforwardly to the configuration
with infinitely many particles :

∑
n∈Z ηn =∞.

ST := {S ∈ S0 ; lim sup
n→−∞

Sn <∞} = {S ∈ S0 ;M0 <∞}

For S ∈ ST , we define

(TS)n = 2Mn − Sn − 2M0

or equivalently,
(Tη)n = min{1− ηn,Wn−1}

where Wn = Mn − Sn.

• We prove ST is a “true” domain of T .



Path spaces

We define T−1S := 2I − S − 2I0 for S ∈ ST−1
where In = infm≥n Sm,

ST−1
:= {S ∈ S0 ; lim inf

n→∞
Sn > −∞} = {S ∈ S0 ; I0 ∈ R}.

TT−1S = S or T−1TS = S does not necessarily hold!

Srev := {S ∈ ST ∩ ST−1
;T−1TS = S ,TT−1S = S} ( ST ∩ ST−1

.

T (Srev ) ⊂ Srev or T−1(Srev ) ⊂ Srev does not necessarily hold!

S inv := {S ∈ S0 ; T kS ∈ Srev ∀k ∈ Z} ( Srev .

• We characterize Srev and S inv explicitly.



Sub-critical and critical boundary conditions

Ssub−critical := S inv ∩ { lim
n→±∞

Sn = ±∞} ⊃ {S ∈ S0 ; lim
n→±∞

Sn
n

= c}

for any 0 < c ≤ 1.

S ∈ Ssub−critical implies the density of particles is asymptotically less than
1
2 as n→ ±∞.

Scritical := S inv ∩ { lim
n→±∞

Sn ̸= ±∞}.

S ∈ Scritical implies the density of particles is asymptotically 1
2 as

n→ ±∞.



Particle current at origin

W0 : the number of particles moved by the carrier from {...− 2,−1, 0} to
{1, 2, . . . } on the first evolution of the BBS

T k−1W0 : the number of particles moved by the carrier from
{...− 2,−1, 0} to {1, 2, . . . } for the k-th evolution.

• Q 1 : How the property of the current sequence (T kW0)k∈Z reflects
the property of the whole configuration (ηn)n∈Z

• Q 2 : Asymptotic behavior of the integrated current
Ck :=

∑k
ℓ=1 T

ℓW0.

.
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(T kW0)k∈Z and (ηn)n∈Z are one-to-one on an enough large subspace of
S inv .
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Random initial configuration

From now on, we consider η = (ηn) is a random configuration.

• We always assume η ∈ Srev , a.s.

.
Remark
..
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.
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If η = (ηn) is stationary ergodic under the space shift, then
Sn
n → 1− 2ρ (n→ ±∞), P-a.s. where ρ = P(η0 = 1).
In particular, if ρ < 1

2 , η ∈ S
inv P-a.s. (and so η ∈ Srev P-a.s.).

And also, if ρ > 1
2 , then S /∈ ST P-a.s.



Gibbs measures

We expect there are invariant measures given as Gibbs measures
parametrized by (βk)k≥0

1

Z
exp

( ∞∑
k=0

βk fk(η)
)
P(dη)

where P is the reference measure under which η is the i.i.d. sequence with
density 1

2 , f0(η) =
∑

n∈Z ηn is the total number of particles, and fk(η) is
the total number of solitons with size greater than or equal to k. Note
that f1(η) =

∑
n∈Z 1{ηn=1,ηn+1=0}.



General properties of invariant measures

.
Theorem (Invariant measures have some spacial homogeneity)
..

.

. ..

.

.

Suppose Tη
d
= η. Then, the followings hold.

(i) S ∈ Ssub−critical ∪ Scritical , P-a.s.
(ii) There exists a constant ρ ∈ [0, 12 ] such that

P (ηn = 1) = ρ, ∀n ∈ Z.

Moreover, ρ = 1
2 if and only if S ∈ Scritical , P-a.s.

(iii) If S ∈ Scritical , P-a.s., then η
d
= 1− η

.
Remark
..
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There exists an invariant measure which is not translation (shift) invariant.



Duality between particle configuration and current at origin

Let θ be the canonical shift on ZZ
+:

θ : ZZ
+ → ZZ

+ : (θZ )k = Zk+1.

• Q 1 : How the property of the current sequence (T kW0)k∈Z reflects
the property of the configuration (ηn)n∈Z

.
Theorem
..

.

. ..

.

.

Suppose S ∈ Ssub−critical , P-a.s.
The distribution of η is invariant and ergodic under T if and only if
((T kW )0)k∈Z is stationary and ergodic under θ.



A sufficient condition to be invariant under T

.
Theorem
..

.

. ..

.

.

Any two of the three following conditions imply the third:

←−η d
= η, W̄

d
= W , Tη

d
= η

where ←−η is the reversed configuration and W̄ is the reversed carrier
process given as

←−η n = η−(n−1), W̄n = W−n.

Any one of the three conditions does not imply the others.



Invariant measure: Example 1 (i.i.d.)

η = (ηn) : i.i.d Bernoulli random variables with P(η0 = 1) = p < 1
2

Then, since W is a reflected simple random walk on Z≥0

←−η d
= η, W̄

d
= W

are satisfied and so
Tη

d
= η.

The measure is given as a Gibbs measure

• β0 = log(1−p
p ), βk = 0 (k ≥ 1).

.
Remark
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Ferrari et al. had already shown the invariance under T for this example.



Invariant measure: Example 2 (η :Markov)

η = (ηn): a two-sided stationary Markov chain on {0, 1} with transition
matrix (

1− p0 p0
1− p1 p1

)
where p0 ∈ (0, 1), p1 ∈ [0, 1) satisfy p0 + p1 < 1.

Then, it is clear that ←−η d
= η.

.
Proposition (Hambly-Martin-O’connell, 2001)
..

.

. ..

.

.Under this condition, W̄
d
= W

And so
Tη

d
= η.

The measure is given as a Gibbs measure

• β0 = log(1−p0
p1

), β1 = log(p1(1−p0)
p0(1−p1)

), βk = 0 (k ≥ 2).

If p0 = p1 = p, then (ηn) is i.i.d with parameter p.



Invariant measure: Example 3 (Bounded solitons)

Fix any K ∈ Z+.
η = (ηn): a sequence of i.i.d. Bernoulli random variables with parameter
p ∈ (0, 1) conditioned on {supn∈ZWn ≤ K}
Since P(supn∈ZWn ≤ K ) = 0, we need a limiting operation to define the
measure precisely.
For this case, we prove that

←−η d
= η, W̄

d
= W

are satisfied and so
Tη

d
= η.

The measure is given as a Gibbs measure formally

• β0 = log(1−p
p ), β1 = · · · = βK = 0, βk =∞ (k ≥ K + 1).



Current at origin

T k−1W0 : the number of particles moved by the carrier from
{...− 2,−1, 0} to {1, 2, . . . } for the k-th evolution.

• Q 2 : Asymptotic behavior of the integrated current
Ck :=

∑k
ℓ=1 T

ℓW0.

.
Theorem
..

.

. ..

.

.

For Example 1: (T kW0)k∈Z is an i.i.d. sequence with Geometric
distribution with parameter 1−2p

1−p .

For Example 2: (T kη0,T
kW0)k∈Z is a stationary two-sided Markov chain

on {0, 1} × Z+.
For Example 3: (T kW0)k∈Z is a stationary two-sided Markov chain on
{0, 1, . . . ,K}.

.
Corollary
..
.
. ..

.

.

For Examples 1,2 and 3, the distribution of η is ergodic under T .



LLN, CLT and LDP for the integrated current

.
Theorem
..

.

. ..

.

.

If (ηn)n∈Z is given by one of the three examples, whose path-encoding is
supported on Ssub−critical , then
(i)

Ck

k
→ EW0, k →∞ a.s.

(ii)
Ck − kEW0√

σ2k
→ N(0, 1) k →∞

in distribution, where

σ2 := Var (W0) + 2
∞∑
k=1

Cov
(
W0,

(
T kW

)
0

)
∈ (0,∞).

(iii) (Ck)k satisfies LDP.



Asymptotic behavior of a tagged particle : Def 1

Consider the dynamics given by Def 1.
.
Remark
..
.
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.
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The order of particles is preserved.

• X0 := min{n ≥ 1; ηn = 1} : the position of the tagged particle at
time 0

• Xk : the position of the tagged particle at time k
.
Theorem
..

.

. ..

.

.

Suppose η is i.i.d product Bernoulli sequence with density p < 1
2 .

Xk

k
→ µp

p
=

1

1− 2p
=: vp a.s.

.
Remark
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vp =
µp

p . Each soliton moves at its own speed, but every particle moves
asymptotically at the same speed.



Generalization

We give a Pitman’s transformation type expression for

• BBS with finite capacity of box and carrier

• Multi-color BBS

• Ultra-discrete KdV equation

• Ultra-discrete Toda equation

• Discrete KdV equation

Using this expression, we obtain

• “infinite particles version” of these systems

• an explicit class of invariant measures for these systems

• asymptotic behavior of “current” under these invariant measures



Future work

• Properties of ”random solitons” on Z and on R
• Scaling limit in non-equilibrium states

• Connections to other stochastic models (random polymers, random
matrices, KPZ equation,...) and integrable systems (KdV equation,
Toda lattice,...)
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