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§ 1. Introduction

§ Quantum Mechanics vs Orthogonal Polynomials

- Orthogonal polynomials often appear in quantum mechanical systems.

harmonic oscillator =» Hermite polynomial

hydrogen atom =» Legendre polynomial (associated Legendre “polynomial”)
L_aguerre polynomial

Pdschl-Teller potential = Jacobi polynomial

- By using the known properties of orthogonal polynomials,
we can investigate quantum mechanical systems.

- Conversely, by using quantum mechanical systems,
we can investigate unknown properties of new orthogonal polynomials.

€ physicist’s approach to orthogonal polynomials
- We consider guantum mechanical systems in one dimension.
Hop (1) = Epdn () |dn] <o (=010 0=E <& <& <
eigenvalue problem of the Schrédinger equation

exactly solvable : {&€,} and {¢,(x)} are known explicitly
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= . (ordinary) orthogonal polynomial

P, (n) : polynomial in n (n=0,1,...) deg P, = n =» acomplete set
orthogonal with respect to appropriate inner product
< three term recurrence relations

NP (n) = AnPri1(n) + BnPrn(n) + CnPr—1(n)
* Bochner’s theorem
(ordinary) orthogonal polynomials satisfying
20 giri%ier differential equation (with polynomial coefficients)
g Hermite, I_(;zyuerre, Jacobi, Bessel polynomials

) ) E non positive definite inner product
= To avoid this No-Go theorem P P

(i) 2nd = higher =» Krall polynomials

(i1) differential - difference _
2 Askey-Wilson, g-Racah polynomials etc. Askey-scheme of hypergeomtric

. orthogonal polynomials
=>» generalizations of Bochner’s theorem J POTY
(ii1) ordinary => non ordinary :in spite of missing degrees, a complete set

I -1 I Gomez-Ullate—Kamran—Milson
=» exceptional or multi-indexed polynomials e s
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! :(i) 2nd = higher (ii) differential - difference (iii) ordinary = non ordinary
* Quantum Mechanical Systems

We consider three kind oQM : ordinary Quantum Mechanics
of systems (Hamiltonians). { IdQM : discrete QM with imaginary shifts
S rdQM : discrete QM with real shifts

oQM  continuous differential eg. 2" Hermite, Laguerre, Jacobi
IdQM  continuous  difference eq. 2nd - MP, Wilson, Askey-Wilson etc.
rdQM discrete difference eq. 2nd  Hahn, Racah, g-Racah etc.
(i) oQM = idQM, rdQM Askey-sgfieme of hypergeomtric

orthogonal polynomials

(ii1) deform oQM, 1dQM, rd systems by Darboux transformations
multi-indexed orthogonal polynomials

(i) We have considered 2" order so far, but can think of higher orders.

Today’s talk : dual (q-)Racah multi-indexed polynomials, which satisfy
higher order difference equations, and exactly solvable rdQM systems
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- Hamiltonian : hermitian operator

Forms of Hamiltonians (2"9 order case)
oOM P =—it
H =p° +U(x)

IdQM p = _id%: v =1,loggq

H=/V(2) eV V*(z) +/V*(2) e "V (z) = V(z) - V*(z)
rdOQM = 0,1,... (z=0,1,...,N)
Hay = —VB(@)D(@+1) dor1y — VB(z = 1)D(x) dp—1
+ (B(z) + D())da,y
= (%w,y) (eia)x,y = 0z+1,y

H = —+/B(z)e’/D(z) — \/D(z) e ?\/B(z) + B(x) + D(x)

L O O R I

- parameters: XA = (A, \o,...) ¢ = (¢™,q2,...)

If needed, we write A-dependence : f = f(A), f(x) = f(z; A\) etc.
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§ 2. Muti-Indexed Polynomials

| Deformation of quantum mechanical systems

)

o
=

iginal - exactly solvable system ¢y (x): described by Ofd'(na)fy orthogonal
- polynomial P, (7
Hou(r) = Entnle) !
Darboux D = {(t1,d1),. .., (tar, dar) }: label of seed solutions
transformation = degree of polynomial part

briefly D = {d1,...,dn} : multi-index set
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rmed exactly solvable system ¢p ., (x): described by multi-indexed
Hpdpn(T) = Endpn() orthogonal polynomial Pp ,,(7)

Hp : expressed by denominator polynomial Zp(n)

ODn, Pp o, Zp - €Xpressed in terms of
determinant (Wronskian, Casoratian)

choice of 5 virtual state Iso spectral
seed solutions eigenstate state deletion
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- eigenstate : ¢pn(z) = Yp(z)Pp ()
multi-indexed polynomial : Pp . (z) = Pp ,, (n(z))
= polynomial in 17 =7(x) : sinusoidal coordinate
> ¢¥p(z)? : weight function

. Pp)n(n) (n=0,1,...) degPpnp(n) =en>n
{eg,e1,...} ={0,1,...}\I |:asetof missing degrees
case (1) 7=1{0,1,...,0—1}

{case(Z) I#{0,1,...,/—1}

The case (1) multi-indexed polynomials were constructed for
Laguerre, Jacobi, (Askey-)Wilson, (g-)Racah cases.

deg Pp () = fp +n  O-Sasaki : arXiv:1105.0508, 1203.5868, 1207.5584

In the following we consider the case (1) polynomials.
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o - € constructed by quantum mechanical
Multi-indexed polynom lal formulation and Darboux transformation

Pp (1) (n=0,1,...) case (1) deg Pp (1) =4p+n

D = {dy,...,dn} : label of system (Darboux transformation)

n . label of polynomial n = number of zeros in the physical region
(number of sign changing)
They are not ordinary orthogonal polynomials.
=» They do not satisfy three term recurrence relations.

=» They satisfy recurrence relations with more terms.

I arXiv:1303.5820, 1410.8236, 1509.08213,
Recurrence relatlons 1606.02836, 1804.10352

M+1

i ' M
(¢) Variable dependent 5" ¢, RESn) P () = 0
k=—M—1

L

(b) constant coefficients X (7)Pp.n() = > 7k Ppntk(n)
- k=—L
(@) RLA,/‘,’C] (n) depends on M only (€ structure of Darboux transformation)

(b) various X ’s are possible.

. »
E ]
| -
! >
| >
-
-
=
E Y
| =
I
g >
N
2 >
=
Y
-
=
-
| =
H =
i &
-
. >




B o Recurrence relations with constant coefficients

L
: deg = =/
X(n)Ppn(n) = Z rifPD,nJrk(n) eg Ep(n) D
k=—L deg PD,’R(’U) — E'D +n
What X gives these relations?

DAnswer @ X (n) = XP¥ (n) Y (n) : arbitrary polynomial in 7 (# 0)
deg X(n) =L =4{p+degY(n) +1 various X ’s are possible

0QM (Laguerre, Jacobi) X(n) = /0 ’ dy Zp(y)Y (y) d);(;z) =Ep(n)Y(n)

IdQM (Wilson, Askey-Wilson) — Miki-Tsujimoto : arXiv:1410.0183

— I : polynomial of degree n
X(n) =I[=pY](n) — polynomial of degree n + 1

X@-i3) - X '3 = S = —_
T S E(e) = Zn(n(e)
rdQM (Racah, g-Racah) arxiv:1804.10352

. — I : polynomial of degree n
X(n) = Ix+ms [“DY] (77) — polynomial of degree n + 1

= Ep ()Y (n(z; A+ (M — 1)d)

X(z) — X(x—1)
n(z; A+ M) —n(x — 1; A+ M6)

X(z) = X (n(z; X+ MJ))
) Ep(x) = Ep(n(z; A+ (M —1)8))
(@) =Y _(n( A+ M8) —n(j — LA + M8))Zp ()Y (n(: A + (M — 1)8))

j=1

F Z .
Or T € Zi>q b
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§ 3. Dual Polynomials
Hpopn(T) = Endp ()

Multi-indexed (g-)Racah polynomials | & described by rdQM

PD,n () = I855) 0 (77(513‘)) n(0)=0 Pp,(0)=1 degPp,(n)=_Ip+n

x=20,1,..., N :variable(coordinate) finite system
n=0,1,...,N :label of polynomial ~ n=number of sign changing

- orthogonality Z Yp(x

normalized eigenvector: j, (;)— 4P

N
plT Ppn T 7 n -
ED(l)w oD > ;Gf)D,n(l’)qu,m(ﬂf) = Onm

- 2"d order difference equation €= Schrédinger equation for polynomial part
HpPpn(z) = EnPpn(z) €0 =0

EnPpa(x) = (- )Ppn(z+1)+ (- )Ppn(@) + (- )Ppnl(z — 1)
recurrence relations for x

- recurrence relations with constant coefficients
min(L,N—n) -
XD [ recurrence relations for n
Z n k PD n—i—k( )

k=—min(L,n) (CC n =0, 1,...,N)
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- : N X N R
" o oOrthogonality: > 0p0(@)0pm(7) = Gum S Y 0pn(@)dpn (@) = day
) x=0

n=0

Dual multi-indexed (g-)Racah polynomials | arxiv:1805.00345
- *® dual polynomial : exchange x and n

_ ¢po(x)

s — QB’DH(QC)
QD’:E(O) =1 \/ED(U

N 2
- orthogonality dp,n - > __ Ozy
nz_:o =p(1) Ops(n)0py(n) ¢po(z)?

2"d order difference 5 three term recurrence recurrence relations
equation of Pp ,(x) relations of Qp ,(n)  for label x

recurrence relations =>» ordinary orthogonal polynomial
for variable x ijm(n) = Qp.a(E) degQpo(E) =1

2L+1termrecurrence 3 2| -th order difference recurrence relations
relations of Pp ,, () equation of Qp ,(n)  for variable n

recurrence relations > Krall type
for label n

dpn
- correspondence = « n, n(z) < Eu, Ppa(n) < Qp..(E), % = dD=
DO D,0

dD,nQv’D,m (n)
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§ 4. Exactly Solvable rdQM

1 = discrete QM with real shifts rdQM

dynamical variable x : = =0,1,..., N finite system
Hamiltonian 7 : hermitian matrix (real symmetric matrix)
2"d order case

— _\/B(m)D(ZU =+ 1 rz+1,y \/B 33 — ]. )5$_1,y
+ (B(z) + D(x))d4,y tri-diagonal matrix (Jacobi matrix)
B(z) >0, D(z) >0 atboundaries D(0) =0 B(N)=0

= —\/B(z)e®/D(z) — /D(z) e °\/B(z) + B(z) + D(z)

Schrodinger equation
Hon(x) = Erndp(x) (R=0,1,...,N) 0=E <& <--- <&y

eigenvector |@n| < oo (trivial for finite systems)

A A A LY R N
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new exactly solvable rdQM systems | arxiv:1805.00345

For each X _ xDY Y (n) : non-negative coefficients
() () deg X(n) =L ={p+degY (n) +1

X dual _ (77X dual . :
> Hp (’Hpamyy )ogx,ygN : real symmetric

min(L,N—x)

kO _
Xdual X, D d'D,il'? kO (6 )$ay — 5:v—l—k,y
Hp (i e
Y dp gtk

k=— min(L,z) (2L+1) - diagonal matrix

- eigenvectors  Hp Mo (z) = Ep S ep(z) (n=0,1,...,N)

dDusl(:E) dD - Q’D n(m) QD,n (CE) — QD,n(gx)

dp,o
gX dual X(n) 0 — 8X dual gX dual

Eigenvectors do not depend on X!
> For X;, X, with arbitrary Y., Y,  [Hp' ", Hpy? "] =0

closure relation holds (in brute force way) =» creation/annihilation operators
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§ 5. Summary and Comments

= : * By using QM systems, we study orthogonal polynomials.

" = . Recurrence relations for case (1) multi-indexed polynomials
* = (variable dependent coefficients and constant coefficients).
(known for Laguerre, Jacobi, Wilson, Askey-Wilson)
(g-)Racah arXiv:1804.10352

. Dual multi-indexed (g-)Racah polynomials. arXiv:1805.00345
ordinary orthogonal polynomials,
higher order difference equations (Krall type).

= New exactly solvable rdQM systems.  arXiv:1805.00345
eigenvectors : dual multi-indexed (g-)Racah polynomials

= Future problems :
-explicit form of 7, for general nk,X,D ?
-relation amongr;;” for different X ?
“Is it possible to deform rdQM systems of dual multi-indexed
(g-)Racah polynomials by Darboux transformation ?
- Is it possible to construct “dual polynomials’ of multi-indexed
(Askey-)Wilson polynomials ?
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B < Ortho. Poly. and QM systems (i) 21 order > higher
= (i1) differential - difference

How to avoid Bochner’s theorem | (iii) ordinary = non-ordinary

ond Hermite, Laguerre, Jacobi
differential multi-indexed version (iii)

equation  pigher Krall version (i)

SNONUIUOD

(1) multi-indexed version (i)(iii)
MP, Wilson, Askey-Wilson etc.
multi-indexed version (ii)(iii)

. 2nd
difference

equation —
(ii) higher Krall type version (i)(ii)

(1) multi-indexed version (i)(ii)(iii)

SNONUIUOD

» Hahn, Racah, g-Racah etc.
difference 2
equation L

(i) higher Krall type version (i)(ii)

(D multi-indexed version (i)(ii)(iii)

multi-indexed version (ii)(iii)
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