Dual Polynomials of the Multi-Indexed (q-)Racah Orthogonal Polynomials

Satoru Odake (Shinshu University)

§ 1. Introduction
§ 2. Multi-indexed Polynomials
§ 3. Dual Polynomials
§ 4. Exactly Solvable rdQM
§ 5. Summary and Comments

arXiv:1804.10352 1805.00345

15 November 2018 SIDE13 (Symmetries and Integrability of Difference Equations) at Fukuoka (Japan), 11-17 November 2018

§ 1. Introduction

Quantum Mechanics vs Orthogonal Polynomials

- Orthogonal polynomials often appear in quantum mechanical systems.
 harmonic oscillator → Hermite polynomial hydrogen atom → Legendre polynomial (associated Legendre "polynomial") Laguerre polynomial
 Pöschl-Teller potential → Jacobi polynomial
- By using the known properties of orthogonal polynomials, we can investigate quantum mechanical systems.
- Conversely, by using quantum mechanical systems, we can investigate unknown properties of new orthogonal polynomials.

physicist's approach to orthogonal polynomials

• We consider quantum mechanical systems in one dimension.

 $\mathcal{H}\phi_n(x) = \mathcal{E}_n\phi_n(x) \|\phi_n\| < \infty \quad (n = 0, 1, \ldots) \quad 0 = \mathcal{E}_0 < \mathcal{E}_1 < \mathcal{E}_2 < \cdots$

eigenvalue problem of the Schrödinger equation

exactly solvable : $\{\mathcal{E}_n\}$ and $\{\phi_n(x)\}$ are known explicitly

1-2

(ordinary) orthogonal polynomial

 $P_n(\eta)$: polynomial in η (n = 0, 1, ...) deg $P_n = n \rightarrow$ a complete set orthogonal with respect to appropriate inner product

 \Leftrightarrow three term recurrence relations

$$\eta P_n(\eta) = A_n P_{n+1}(\eta) + B_n P_n(\eta) + C_n P_{n-1}(\eta)$$

Bochner's theorem

(ordinary) orthogonal polynomials satisfying 2nd order differential equation (with polynomial coefficients) (11) ⇔ Hermite, Laguerre, Jacobi, Bessel polynomials non positive definite inner product To avoid this No-Go theorem (i) 2nd \rightarrow higher \rightarrow Krall polynomials (ii) differential \rightarrow difference Askey-scheme of hypergeomtric → Askey-Wilson, *q*-Racah polynomials etc. orthogonal polynomials \rightarrow generalizations of Bochner's theorem (iii) ordinary \rightarrow non ordinary : in spite of missing degrees, a complete set Gómez-Ullate-Kamran-Milson → exceptional or multi-indexed polynomials arXiv:0807.3939

(i) 2nd \rightarrow higher (ii) differential \rightarrow difference (iii) ordinary \rightarrow non ordinary

Quantum Mechanical Systems

We consider three kind of systems (Hamiltonians).

oQM : ordinary Quantum Mechanics **idQM** : discrete QM with imaginary shifts **rdQM** : discrete QM with real shifts

with R.Sasaki

QM system	dynamical variable	Schrödinger equation	order	examples of orthogonal polynomials						
oQM	continuous	differential eq.	2^{nd}	Hermite, Laguerre, Jacobi						
idQM	continuous	difference eq.	2^{nd}	MP, Wilson, Askey-Wilson etc.						
rdQM	discrete	difference eq.	2 nd	Hahn, Racah, q-Racah etc.						
(ii) $oQM \rightarrow idQM$, $rdQM$ Askey-scheme of hypergeomtric orthogonal polynomials										
(iii) deform oQM, idQM, rdQM systems by Darboux transformations										
multi-indexed orthogonal polynomials										
(i) We have considered 2^{nd} order so far, but can think of higher orders.										

Today's talk : dual (q-)Racah multi-indexed polynomials, which satisfy higher order difference equations, and exactly solvable rdQM systems

Hamiltonian : hermitian operator Forms of Hamiltonians (2nd order case) **oQM** $p = -i\frac{d}{dx}$ $\mathcal{H} = p^2 + U(x)$ **idQM** $p = -i\frac{d}{dx}$ $\gamma = 1, \log q$ $\mathcal{H} = \sqrt{V(x)} e^{\gamma p} \sqrt{V^*(x)} + \sqrt{V^*(x)} e^{-\gamma p} \sqrt{V(x)} - V(x) - V^*(x)$ **rdQM** $x = 0, 1, \dots, (x = 0, 1, \dots, N)$ $\mathcal{H}_{x,y} = -\sqrt{B(x)D(x+1)}\,\delta_{x+1,y} - \sqrt{B(x-1)D(x)}\,\delta_{x-1,y}$ $+ (B(x) + D(x))\delta_{x,y}$ $\mathcal{H} = (\mathcal{H}_{x,y}) \qquad (e^{\pm \partial})_{x,y} = \delta_{x\pm 1,y}$ $\mathcal{H} = -\sqrt{B(x)} e^{\partial} \sqrt{D(x)} - \sqrt{D(x)} e^{-\partial} \sqrt{B(x)} + B(x) + D(x)$ • parameters : $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \ldots)$ $q^{\boldsymbol{\lambda}} = (q^{\lambda_1}, q^{\lambda_2}, \ldots)$

If needed, we write λ -dependence : $f = f(\lambda), f(x) = f(x; \lambda)$ etc.

§ 2. Muti-Indexed Polynomials

Solution Structure Content Deformation of quantum mechanical systems

exactly solvable system $\phi_n(x)$: described by ordinary orthogonal $\mathcal{H}\phi_n(x) = \mathcal{E}_n\phi_n(x)$ Darboux transformation $\mathcal{D} = \{(\mathfrak{t}_1, d_1), \dots, (\mathfrak{t}_M, d_M)\}$: label of seed solutions $\mathfrak{D} = \{d_1, \dots, d_M\}$: multi-index set

deformed

original

briefly $\mathcal{D} = \{d_1, \dots, d_M\}$: multi-index set exactly solvable system $\mathcal{H}_{\mathcal{D}}\phi_{\mathcal{D}n}(x) = \mathcal{E}_n\phi_{\mathcal{D}n}(x)$ $\phi_{\mathcal{D}n}(x)$: described by multi-indexed orthogonal polynomial $P_{\mathcal{D},n}(\eta)$ $\mathcal{H}_{\mathcal{D}}$: expressed by denominator polynomial $\Xi_{\mathcal{D}}(\eta)$ $\phi_{\mathcal{D}n}, P_{\mathcal{D},n}, \Xi_{\mathcal{D}}$: expressed in terms of determinant (Wronskian, Casoratian) type of seed solution deformed system virtual state iso spectral

eigenstate

pseudo virtual state

state deletion

state addition

eigenstate : $\phi_{\mathcal{D}n}(x) = \psi_{\mathcal{D}}(x)\check{P}_{\mathcal{D},n}(x)$ multi-indexed polynomial : $\check{P}_{\mathcal{D},n}(x) = P_{\mathcal{D},n}(\eta(x))$

→ polynomial in $\eta = \eta(x)$: sinusoidal coordinate

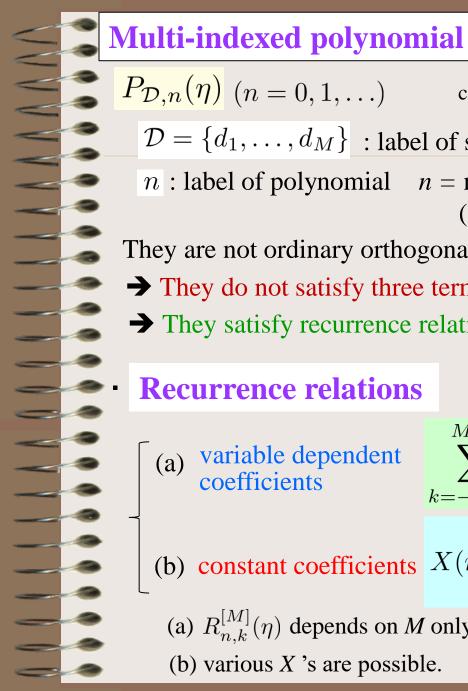
→ $\psi_{\mathcal{D}}(x)^2$: weight function

 $P_{\mathcal{D},n}(\eta) \quad (n = 0, 1, \ldots) \qquad \deg P_{\mathcal{D},n}(\eta) = e_n \ge n$ $\{e_0, e_1, \ldots\} = \{0, 1, \ldots\} \setminus I \quad I: \text{a set of missing degrees}$ $\begin{bmatrix} \text{case (1)} & I = \{0, 1, \ldots, \ell - 1\} \\ \text{case (2)} & I \neq \{0, 1, \ldots, \ell - 1\} \end{bmatrix}$

The case (1) multi-indexed polynomials were constructed for Laguerre, Jacobi, (Askey-)Wilson, (q-)Racah cases.

 $\deg P_{\mathcal{D},n}(\eta) = \ell_{\mathcal{D}} + n$ O-Sasaki : arXiv:1105.0508, 1203.5868, 1207.5584

In the following we consider the case (1) polynomials.



← constructed by quantum mechanical formulation and Darboux transformation

$$P_{\mathcal{D},n}(\eta)$$
 $(n = 0, 1, \ldots)$ case (1) deg $P_{\mathcal{D},n}(\eta) = \ell_{\mathcal{D}} + n$

 $\mathcal{D} = \{d_1, \ldots, d_M\}$: label of system (Darboux transformation)

n: label of polynomial n = number of zeros in the physical region (number of sign changing)

They are not ordinary orthogonal polynomials.

 \rightarrow They do not satisfy three term recurrence relations.

 \rightarrow They satisfy recurrence relations with more terms.

Recurrence relations

arXiv:1303.5820, 1410.8236, 1509.08213, 1606.02836, 1804.10352

(a) variable dependent coefficients

 $\sum \quad \mathcal{C}_{\mathcal{D},n+k} R_{n,k}^{[M]}(\eta) P_{\mathcal{D},n+k}(\eta) = 0$

(b) constant coefficients $X(\eta)P_{\mathcal{D},n}(\eta) = \sum_{n,k} r_{n,k}^{X,\mathcal{D}}P_{\mathcal{D},n+k}(\eta)$ k = -L

M+1

k = -M - 1

(a) $R_{n,k}^{[M]}(\eta)$ depends on *M* only (\leftarrow structure of Darboux transformation) (b) various X 's are possible.

Recurrence relations with constant coefficients

$$X(\eta)P_{\mathcal{D},n}(\eta) = \sum_{k=-L}^{L} r_{n,k}^{X,\mathcal{D}} P_{\mathcal{D},n+k}(\eta)$$

$$\deg \Xi_{\mathcal{D}}(\eta) = \ell_{\mathcal{D}}$$
$$\deg P_{\mathcal{D},n}(\eta) = \ell_{\mathcal{D}} + n$$

What *X* gives these relations?

Answer: $X(\eta) = X^{\mathcal{D},Y}(\eta)$ $Y(\eta)$: arbitrary polynomial in $\eta \ (\neq 0)$ $\deg X(\eta) = L = \ell_{\mathcal{D}} + \deg Y(\eta) + 1$ various X 's are possible

 $\begin{aligned} & \mathbf{OQM} \text{ (Laguerre, Jacobi)} \quad X(\eta) = \int_{0}^{\eta} dy \,\Xi_{\mathcal{D}}(y) Y(y) \quad \frac{dX(\eta)}{d\eta} = \Xi_{\mathcal{D}}(\eta) Y(\eta) \\ & \mathbf{idQM} \text{ (Wilson, Askey-Wilson)} \\ & X(\eta) = I[\Xi_{\mathcal{D}}Y](\eta) \quad I: \text{ polynomial of degree } n \\ & \mapsto \text{ polynomial of degree } n + 1 \\ & \frac{\check{X}(x - i\frac{\gamma}{2}) - \check{X}(x + i\frac{\gamma}{2})}{\eta(x - i\frac{\gamma}{2}) - \eta(x + i\frac{\gamma}{2})} = \check{\Xi}_{\mathcal{D}}(x)\check{Y}(x) \quad \check{\Xi}_{\mathcal{D}}(x) = \Xi_{\mathcal{D}}(\eta(x)) \quad \check{X}(x) = X(\eta(x)) \\ & \check{Y}(x) = Y(\eta(x)) \end{aligned}$ $\mathbf{rdQM} \text{ (Racah, q-Racah)} \quad \mathbf{arXiv:1804.10352} \\ & X(\eta) = I_{\lambda+M\delta}[\Xi_{\mathcal{D}}Y](\eta) \quad I_{\lambda}: \text{ polynomial of degree } n \\ & \mapsto \text{ polynomial of degree } n + 1 \\ & \frac{\check{X}(x) - \check{X}(x - 1)}{\eta(x; \lambda + M\delta) - \eta(x - 1; \lambda + M\delta)} = \check{\Xi}_{\mathcal{D}}(x)Y(\eta(x; \lambda + (M - 1)\delta) \\ & \check{X}(x) = X(\eta(x; \lambda + M\delta)) \end{aligned}$

$$\check{\Xi}_{\mathcal{D}}(x) = \Xi_{\mathcal{D}}(\eta(x; \lambda + (M-1)\delta))$$

$$X \in \mathbb{Z}_{\geq 0} \check{X}(x) = \sum_{j=1}^{\infty} \left(\eta(j; \boldsymbol{\lambda} + M\boldsymbol{\delta}) - \eta(j-1; \boldsymbol{\lambda} + M\boldsymbol{\delta}) \right) \check{\Xi}_{\mathcal{D}}(j) Y \left(\eta(j; \boldsymbol{\lambda} + (M-1)\boldsymbol{\delta}) \right)$$

For

§ 3. Dual Polynomials $\mathcal{H}_{\mathcal{D}}\phi_{\mathcal{D}\,n}(x) = \mathcal{E}_n\phi_{\mathcal{D}\,n}(x)$ Multi-indexed (q-)Racah polynomials described by rdQM $\check{P}_{\mathcal{D},n}(x) = P_{\mathcal{D},n}(\eta(x)) \qquad \eta(0) = 0 \quad P_{\mathcal{D},n}(0) = 1 \quad \deg P_{\mathcal{D},n}(\eta) = \ell_{\mathcal{D}} + n$ $x = 0, 1, \dots, N$: variable(coordinate) finite system n = number of sign changing $n = 0, 1, \dots, N$: label of polynomial • orthogonality $\sum_{n=0}^{N} \frac{\psi_{\mathcal{D}}(x)^2}{\check{\Xi}_{\mathcal{D}}(1)} \check{P}_{\mathcal{D},n}(x) \check{P}_{\mathcal{D},m}(x) = \frac{\delta_{nm}}{d_{\mathcal{D},n}^2}$ normalized eigenvector: $\hat{\phi}_{\mathcal{D}n}(x) = \frac{d_{\mathcal{D},n}}{\sqrt{\check{\Xi}_{\mathcal{D}}(1)}} \psi_{\mathcal{D}}(x)\check{P}_{\mathcal{D},n}(x) \Rightarrow \sum_{r=0}^{T} \hat{\phi}_{\mathcal{D},n}(x)\hat{\phi}_{\mathcal{D},m}(x) = \delta_{nm}$ 2nd order difference equation - Schrödinger equation for polynomial part $\mathcal{H}_{\mathcal{D}}\dot{P}_{\mathcal{D},n}(x) = \mathcal{E}_n\dot{P}_{\mathcal{D},n}(x) \quad \mathcal{E}_0 = 0$ $\mathcal{E}_n \check{P}_{\mathcal{D},n}(x) = (\cdots) \check{P}_{\mathcal{D},n}(x+1) + (\cdots) \check{P}_{\mathcal{D},n}(x) + (\cdots) \check{P}_{\mathcal{D},n}(x-1)$ recurrence relations for x recurrence relations with constant coefficients $\min(L, N-n)$ $\check{X}(x)\check{P}_{\mathcal{D},n}(x) = \sum r_{n,k}^{X,\mathcal{D}}\check{P}_{\mathcal{D},n+k}(x)$ recurrence relations for *n* $k = -\min(L, n)$ $(x, n = 0, 1, \dots, N)$

orthogonality:
$$\sum_{x=0}^{N} \hat{\phi}_{D,n}(x) \hat{\phi}_{D,m}(x) = \delta_{nm} \iff \sum_{n=0}^{N} \hat{\phi}_{D,n}(x) \hat{\phi}_{D,n}(x) = \delta_{xy}$$
Dual multi-indexed (q-)Racah polynomials arXiv:1805.00345
dual polynomial : exchange x and n

$$\tilde{Q}_{D,x}(n) = \frac{\tilde{P}_{D,n}(x)}{\tilde{P}_{D,0}(x)} \quad \tilde{Q}_{D,x}(0) = 1 \qquad \hat{\phi}_{Dn}(x) = \frac{\phi_{D0}(x)}{\sqrt{\tilde{z}_{D}(1)}} d_{D,n} \bar{Q}_{D,x}(n)$$
• orthogonality
$$\sum_{n=0}^{N} \frac{d_{D,n}^{2}}{\tilde{Z}_{D}(1)} \tilde{Q}_{D,x}(n) \tilde{Q}_{D,y}(n) = \frac{\delta_{xy}}{\phi_{D0}(x)^{2}}$$
• orthogonality
$$\sum_{n=0}^{N} \frac{d_{D,n}^{2}}{\tilde{Z}_{D}(1)} \tilde{Q}_{D,x}(n) \tilde{Q}_{D,y}(n) = \frac{\delta_{xy}}{\phi_{D0}(x)^{2}}$$
• correspondence relations
for variable x
• 2L+1 term recurrence
relations of $\tilde{P}_{D,n}(x)$
• correspondence $x \leftrightarrow n, \eta(x) \leftrightarrow \mathcal{E}_{n}, P_{D,n}(\eta) \leftrightarrow Q_{D,x}(\mathcal{E}), \frac{\phi_{D0}(x)}{\phi_{D0}(0)} \leftrightarrow \frac{d_{D,n}}{d_{D,0}}$

AAAAA

-

§ 4. Exactly Solvable rdQM

discrete QM with real shifts rdQM

dynamical variable $x: x = 0, 1, \dots, N$ finite system

Hamiltonian \mathcal{H} : hermitian matrix (real symmetric matrix) 2^{nd} order case

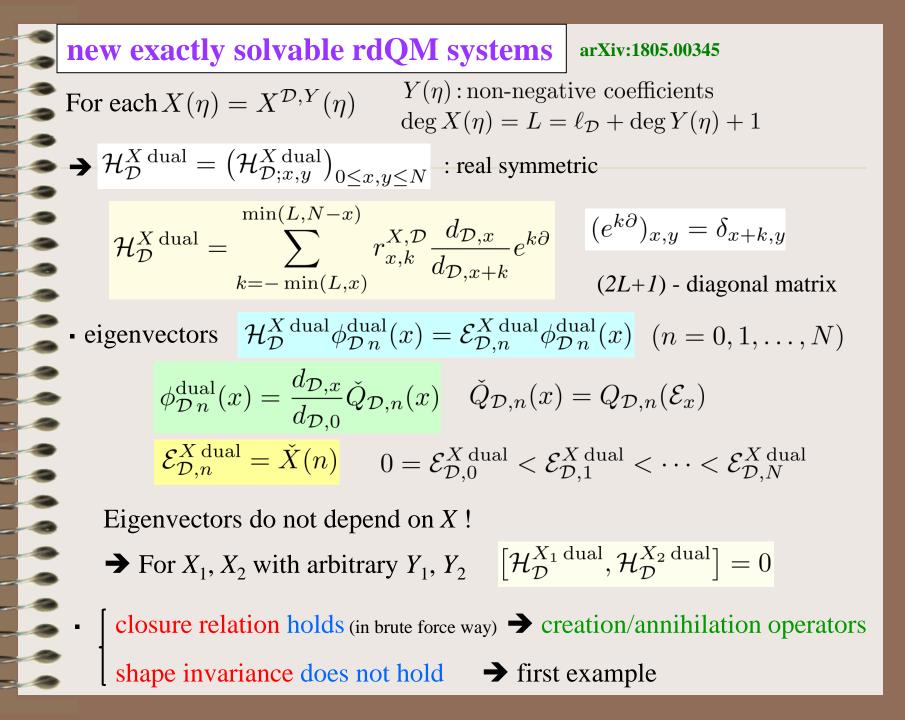
$$\begin{aligned} \mathcal{H}_{x,y} &= -\sqrt{B(x)D(x+1)} \,\delta_{x+1,y} - \sqrt{B(x-1)D(x)} \,\delta_{x-1,y} \\ &+ \left(B(x) + D(x)\right) \delta_{x,y} \quad \text{tri-diagonal matrix (Jacobi matrix)} \end{aligned}$$
$$\begin{aligned} B(x) &> 0, \ D(x) > 0 \quad \text{at boundaries } D(0) = 0 \quad B(N) = 0 \\ \mathcal{H} &= -\sqrt{B(x)} \,e^{\partial} \sqrt{D(x)} - \sqrt{D(x)} \,e^{-\partial} \sqrt{B(x)} + B(x) + D(x) \end{aligned}$$

Schrödinger equation

 $\mathcal{H}\phi_n(x) = \mathcal{E}_n\phi_n(x) \ (n = 0, 1, \dots, N) \ 0 = \mathcal{E}_0 < \mathcal{E}_1 < \dots < \mathcal{E}_N$

eigenvector $\|\phi_n\| < \infty$ (trivial for finite systems)

diagonalization of matrices



§ 5. Summary and Comments

- By using QM systems, we study orthogonal polynomials.
- Recurrence relations for case (1) multi-indexed polynomials (variable dependent coefficients and constant coefficients). (known for Laguerre, Jacobi, Wilson, Askey-Wilson) (q-)Racah arXiv:1804.10352
- Dual multi-indexed (q-)Racah polynomials. **arXiv:1805.00345** ordinary orthogonal polynomials, higher order difference equations (Krall type).
- New exactly solvable rdQM systems. **arXiv:1805.00345** eigenvectors : dual multi-indexed (*q*-)Racah polynomials
- Future problems :
 - •explicit form of $r_{n,k}^{X,\mathcal{D}}$ for general n,k,X,D?
 - •relation among $r_{n,k}^{X,\mathcal{D}}$ for different X ?
 - Is it possible to deform rdQM systems of dual multi-indexed (*q*-)Racah polynomials by Darboux transformation ?
 - Is it possible to construct "dual polynomials" of multi-indexed (Askey-)Wilson polynomials ?

	Ortho.	Poly	y. and QM	(i) 2^{nd} order \rightarrow higher (ii) differential \rightarrow difference						
How to avoid Bochner's theorem (ii) differential \rightarrow non-ordinary \rightarrow non-ordinary										
	QM system	dyn. var.	Schrödinger equation	order	examples of orthogonal polynomials	status				
		S	differential equation	2 nd	Hermite, Laguerre, Jacobi	Ô				
	$\circ OM$	continuous			multi-indexed version (iii)	0				
	oQM			higher (i)	Krall version (i)	0				
					multi-indexed version (i)(iii)	×				
	idQM (ii)	continuous	difference equation (ii)	2 nd	MP, Wilson, Askey-Wilson etc.	Ø				
					multi-indexed version (ii)(iii)	Δ				
				higher (i)	Krall type version (i)(ii)	\triangle				
_ >					multi-indexed version (i)(ii)(iii)	×				
		discrete	difference equation (ii)	2 nd	Hahn, Racah, q-Racah etc.	Ô				
	rdQM (ii)				multi-indexed version (ii)(iii)	\triangle	today 🔶			
				higher (i)	Krall type version (i)(ii)	\triangle	y's talk			
					multi-indexed version (i)(ii)(iii)	×	lk			
	understanding : $\bigcirc > \bigcirc > \triangle > \times$ END									