Ultradiscretization with parity variables for nonlinear oscillator and its conserved quantity

Shin Isojima (Hosei University, Japan)
Collaboration with Hirota Toyama

[Traditional] Ultradiscretization (UD)

- For a given difference equation for x_n:
 1. Replace x_n with $\exp \log (\pm x_n)$.
 2. Take the limit $\lim_{\alpha \to 0}$.

- From the formula:
 $$\lim_{\alpha \to 0} \frac{\alpha}{\log(\pm(\alpha(\pm \Delta x + \alpha\pm x_n)))} = \max(x, x_n)$$

- We obtain a piecewise-linear equation for x_n.

- Under proper restriction, the resulting equation is regarded a Cellular Automaton (CA).

- This CA has some essential properties of the original equation.

First and typical example: Discrete Lotka-Volterra equation

- The box-and-ball system

Negative Difficulty in Ultradiscretization

- The difference equation must be subtraction-free.
 $$\dfrac{\alpha}{\log(\pm x_n)} = 0$$

- Its solutions must be definite-sign,
 $$x_n = \exp \log (\pm x_n)$$

- For $x_0 = -\alpha$, it becomes $x_n = 0$.

- We assume $x_n > 0$ and move the negative term, and employ UD:

 - $x_n = x_0 - \alpha$, \(\Delta x = 0 \)

- $\exp \log(\pm(\alpha(\pm \Delta x + \alpha x_n))) = 0$

- $\alpha = 0$

Ultradiscretization with parity variables (p-UD)

- Introduce parity variables, \(q_n, \bar{q}_n \) (the sign of \(x_n \)) and an amplitude A_n, replacing x_n by $x_n = e^{\alpha q_n}$.

- That is,
 $$x_n = \pm A_n e^{\alpha q_n}$$

- For $x_0 = -\alpha$, we consider four cases,
 - (i) \(\Delta x = 0 \) \(A_n = \alpha \),
 $$\exp \log(\pm(\alpha(\pm \Delta x + \alpha \pm x_n))) = A_n$$
 - (ii) \(\Delta x = 0 \) \(A_n = 0 \),
 $$\exp \log(\pm(\alpha(\pm \Delta x + \alpha x_n))) = \pm \alpha$$
 - (iii) \(\Delta x = 0 \) \(A_n = 1 \),
 $$\exp \log(\pm(\alpha(\pm \Delta x + \alpha \pm x_n))) = 1$$
 - (iv) \(\Delta x = 0 \) \(A_n = -1 \),
 $$\exp \log(\pm(\alpha(\pm \Delta x + \alpha x_n))) = -1$$

- We consider this set of equations as UD analogue of $x_n = -\alpha x_0 + \Delta x$.

Time evolution of p-UD equation

- We put $A_n = 1, \bar{q}_n = 0$.

- Assume the pair \((x_0, q_n) = (1.2)\) is given.

- From $x_0 = 1$, the variable x_n becomes
 - $\Delta x = 1, \alpha = 0$

- Only if Δx is solution $x_n = 1$ (which means $q_n = 1$).

- That is, x_n obtains the unique solution:

 - $x_n = 1, q_n = 1$

- Both equations have solutions $x_n = 1, \alpha = 1$.

- $q_n = 1, q_n = 1$

- $x_n = 0, q_n = 0$

- We obtain indeterminate solutions:

 - $x_n = 0, q_n = -1$

- $x_n = 1, q_n = 1$

- $x_n = 1, q_n = -1$

Our study

- We give the p-UD analogue of a nonlinear equation with conserved quantity (CQ) and examine the behavior of ultradiscretized solutions and CQ.

Hard spring equation

- $$\frac{d^2 x}{dt^2} + \alpha x + \beta x^3 = 0$$

- $$M(x) = 1 + \frac{d^2 x}{dt^2} + \frac{d^2 x}{dt^2}$$

- Their integrable discrete analogues is given in a Japanese book, `Discrete and Ultradiscrete System` by Prof. Hirota and Prof. Takahashi.

Discrete hard spring equation

- **Conserved quantity**

 - $$H(\Delta x, \Delta q_n) = \frac{1}{2} \Delta q_n^2 + \frac{1}{2} \Delta x^2 + \frac{1}{2} \Delta x^2$$

- Their integrable discrete analogues is given in a Japanese book, `Discrete and Ultradiscrete System` by Prof. Hirota and Prof. Takahashi.

Summary by diagram (1) —periodic type

- Solution $\phi(0) = 0, \phi(0) > 0, \phi(0) \geq 0, \phi(0) \neq 0$

- Solution $\phi(0) = 0$.

- Solution $\phi(0) > 0$.

- Solution $\phi(0) \geq 0$.

Conclusion

- We constructed the ultradiscretized analogue of the hard-spring equation and its conserved quantity.

- We have studied

 - all initial values for $\phi(0) = 0$ and $\phi(1), q(0, \phi(0)) \neq 0$ for $\phi(0) > 0$.

- The behavior of solutions and ultradiscretized conserved quantity is categorized as follows.

- **Non-periodic**

 - One solution.

 - Parity variable.

- **Non-periodic and complicated**

 - Two solutions.

 - Parity variable.

Reference