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Abstract
We consider the non-standard discretisation method introduced by Kahan & Li [6], for quadratic vector fields ẋ = F (x), given
by the formula

x̃− x

h
=

(
I − h

2
DF (x)

)−1
F (x).

We apply the method to certain cubic Hamiltonian systems of Painlevé type, investigate the possibility of singularity confine-
ment for the resulting systems and their algebraic entropy, or dynamical degree. This is joint work with Dr. habil. Galina
Filipuk (University of Warsaw, Poland) [2].

Introduction

Discretising a differential equation or system of equations is not a unique process. Although
many discretisation schemes are available, in particalar for numerical solutions, they often
do not preserve certain nice properties of the equations. For integrable equations, in addi-
tion to having the original system as a continuous limit, we seek for the discretised system
to preserve integrability. The Kahan method was applied to the equations of motion for the
Euler top [4] and the Lagrange top [5] by Hirota and Kimura, where it does exactly that, and
hence is also known as the Hirota-Kimura method. However, for non-autonomous systems
such as, for example the Painlevé equations, the method is in general not successful, apart
from some special cases [1].

A cubic Hamiltonian systems related to Painlevé IV

We discretise the following differential system given by a cubic Hamiltonian studied in [7],

H(z, p, q) =
1

3

(
p3 + q3

)
+ f (z)pq + αp + βq, α, β ∈ C

q′ = p2 + f (z)q + α, p′ = −q2 − f (z)p− β,
(1)

When f (z) = cz + d is linear, c 6= 0, the system is related to the Painlevé IV equation, and
in case c = 0, f (z) = const., it has elliptic solutions. We apply the Kahan method to obtain
the following non-autonomous discrete system:

xn+1 =
2(fn+1 − 2)y2n + 4βyn − (fn + 2)(fn+1 + 2)xn − 2αfn − 4α

−4 + f 2n − 4xnyn

yn+1 =
2(fn+1 + 2)x2n + 4αxn − (fn − 2)(fn+1 − 2)yn − 2βfn + 4β

−4 + f 2n − 4xnyn
.

(2)

We will perform a type of singularity confinement test, imposing a condition on fn, and
determine the dynamical degree of the discrete map in this case.

Singularity confinement

Singularities in the discrete system (2) occur when the denominator vanishes, i.e. when
4xnyn = (fn + 2)(fn − 2). We apply a singularity confinement test in the form

xn =
fn
2
− σ + ε, yn =

fn
2
+ σ + ε, σ ∈ {1,−1}, |ε| � 1.

xn+1 =
2(2 + α + β) + fn(α− β + fn + 2fn+1)

2εfn
+O(1)

yn+1 = −
2(2 + α + β) + fn(α− β + fn + 2fn+1)

2εfn
+O(1)

The singularity reappears periodically, unless fn satisfies the condition

α− β + fn − fn+1 = 0 =⇒ fn = (α− β)n + γ, γ ∈ C,

that is, when f (z) = (α−β)z+d is a linear function in the original system (1), correspond-
ing to the case when it is related to the Painlevé IV equation. But although (1) is integrable
for any f (z) = cz + d, we only find singularity confinement in the discrete system for a
special value of c.

Dynamical degree

Algebraic entropy was introduced by Hietarinta & Viallet [3] as a measure of complexity
for a discrete map, defined by

lim
n→∞

log dn
n

,

where the dn denote the degrees of rational iterates under the discrete map. Zero algebraic
entropy is associated with integrable discrete maps. The dynamical degree λ is the limit
factor of degree growth of the rational iterates under the discrete map so essentially just the
exponential of the algebraic entropy.
Using MATHEMATICA, we obtain the dynamical degree of the discrete map (2):

•when fn = cn, c 6= α− β, c 6= 0, the dynamical degree is 2

•when fn = (α − β)n, α 6= β, the dynamical degree λ is 1 < λ < 2,
where λ ≈ 1.839... is the largest real root of the polynomial λ4 − 2λ3 + 1.
This is found by generating the sequence of degrees dn of the rational iterates:
1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, . . . , obeying the recursive law

dn = 2dn−1 − dn−4, d0 = 1, dn = 0, n < 0.

Conclusions

Due to singularity confinement in the case fn = (α−β)n, cancellations occur in the iteration
of the discrete map leading to a reduced dynamical degree compared to the generic case, but
not enough for the map to be integrable. This corresponds to the case f (z) = (α − β)z in
the Hamiltonian system (1). When f (z) = cz the system (1) is related to the fourth Painlevé
equation, but only for the special case c = α − β do we get singularity confinement. The
question remains how one can further modify the Kahan discretisation method to obtain an
integrable discrete map.
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