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Goal:

Discretize surtaces while preserving
mathematical structures
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Swosth cese: Minimal surfaces in R’
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Swmesth case:  Christoffel transformations

x a surface in R>

e x* i1s defined on the same domain as x
e x* has the same conformal structure as x,

e and x and x* have parallel tangent planes with opposite orientations at corre-
sponding points.
Lemma

Away from umbilics of x, the Christoffel transform x* exists if and
only if x is isothermic.



Swosth case:  Darboux transformations

Geometrically, a Darboux transformation of an i1sothermic surface 1s one such that

e there exists a sphere congruence enveloped by the original surface and the
transform,

e the correspondence, given by the sphere congruence, from the original surface
to the other enveloping surface (1.e. the transform), preserves curvature lines,

e this correspondence preserves conformality.




Swmosth case:

Lemma If the initial isothermic surface x = x(u,v) has a polynomial con-
served quantity P of order n, then any Darboux transform X = X(u,v) has a polyno-

mial conserved quantity P of order at most n+ 1.

The Darboux transform in Lemma

1s a Backlund transform exactly when
it 1s of type at most n.
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Swmosth case:




Figure 4.1: From left to right, cuspidal beaks (£ < 1/(2v/2)), other type 2 degenerate
singularity (€ = 1/(2v/2)) and cuspidal lips (€ > 1/(2v/2)), as in Example 4.3



Smoo'“\ cqgse:

Result by Teramoto , and Umehara, Murata

Front = Legendre immersion
Frontal = normal field well defined but not necessarily a Legendre immersion
Nondegenerate singularity “=* local singular set 1s a single creased curve

Teramoto’s and Umehara-Murata’s result: For any nondegenerate singularity on a
front, one of the principal curvatures will diverge to infinity, with a sign change.
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When are discrete flat or parabolic or
singular vertices necessarily singular?

* Smooth nonzero-CGC surfaces never have a principal curvature equal to zero.

* Parallel surfaces of smooth minimal surfaces in R"3 without umbilic points never
have a principal curvature equal to zero.

* Parallel surfaces of smooth maximal surfaces in R™(2,1) without umbilic points never
have a principal curvature equal to zero.
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Examples of discrete €2

surfaces

* Minimal in R"3 and H"3
* Delaunay in R"3 and S”3 (including Clifford minimal)




Examples of discrete €2 surfaces

* Minimal in R"3 and H"3
* Delaunay in R"3 and S”3 (including Clifford minimal)

* Constant Gaussian curvature, in R™3




Examples of discrete €2 surfaces

Minimal in R™3 and H"3
Delaunay in R”3 and S*3 (including Clifford minimal)
Constant Gaussian curvature, in R™3

Linear Weingarten of Bryant type in H"3







Examples of discrete €2 surfaces

Minimal in R*3 and H™3

Delaunay in R”3 and S*3 (including Clifford minimal)
Constant Gaussian curvature, in R™3

Linear Weingarten of Bryant type in H"3

Higher-order Enneper minimal surface in R™3, and parallel surface (with a 1/3 part)
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Examples of discrete €2 surfaces

Minimal in R*3 and H™3

Delaunay in R™3 and S*3 (including Clifford minimal)

Constant Gaussian curvature, in R™3

Linear Weingarten of Bryant type in H”3

Higher-order Enneper minimal surface in R™3, and parallel surface (with a 1/3 part)

Flat in H”3, higher-order Enneper-type maximal in R"(2,1), and parallel surface







Examples of results about singularities on

discrete C2 surfaces

* Weierstrass representations for discrete surfaces in all cases where we expect them
(Bobenko, Pinkall, Hertrich-Jeromin --->Hoffmann, Sasaki, Yoshida, Yasumoto & I).




Examples of results about singularities on

discrete C2 surfaces

* Weierstrass representations for discrete surfaces in all cases where we expect them.

* Smooth flat surfaces in H"3 have caustics that are also flat, with a Weierstrass
representation for the caustics. We (Hotffmann, Sasaki, Yoshida, R--) proved a
corresponding setting in the discrete case. Here the caustics have a discrete
Weierstrass representation and have planar quadrilaterals, but not circular ones. In the
discrete case as well, it’s the collection of singular vertices on the parallel surfaces of
the flat surface that form the caustic.










Examples of results about singularities on

discrete C2 surfaces

* Weierstrass representations for discrete surfaces in all cases where we expect them.

* Weierstrass representation for caustics of discrete flat surfaces in H”3 matching with
singular vertices on the parallel surfaces of the initial flat surface.

Singularities on smooth maximal surfaces in R™(2,1) occur at lightlike points of the
surface, where g (stereographic projection of the Gauss map) has absolute value 1.
Yasumoto and I: singular vertices on discrete maximal surfaces have adjacent faces
that are not spacelike, where the corresponding quadrilateral for the discrete g has a
circumcircle that intersects S™1 (the last part Yasumoto established in a solo paper).




Examples of results about singularities on
discrete €2 surfaces

Weierstrass representations for discrete surfaces in all cases where we expect them.

Weierstrass representation for caustics of discrete flat surfaces in H”3 matching with
singular vertices on the parallel surfaces of the initial flat surface.

Singular vertices on discrete maximal surfaces have adjacent faces that are not
spacelike, where the corresponding circumcircle for the discrete g intersects S™1.

Similar result (Yasumoto & I) for “spacelike” CMC 1 surfaces in de Sitter space
SER23L)

Still cannot distinguish a cuspidal edge from a swallowtail in the discrete casel
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